Extensions 1→N→G→Q→1 with N=C22×A4 and Q=C22

Direct product G=N×Q with N=C22×A4 and Q=C22
dρLabelID
A4×C2448A4xC2^4192,1539

Semidirect products G=N:Q with N=C22×A4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C22×A4)⋊C22 = D4×S4φ: C22/C1C22 ⊆ Out C22×A4126+(C2^2xA4):C2^2192,1472
(C22×A4)⋊2C22 = C2×D4×A4φ: C22/C2C2 ⊆ Out C22×A424(C2^2xA4):2C2^2192,1497
(C22×A4)⋊3C22 = C2×A4⋊D4φ: C22/C2C2 ⊆ Out C22×A424(C2^2xA4):3C2^2192,1488
(C22×A4)⋊4C22 = C23×S4φ: C22/C2C2 ⊆ Out C22×A424(C2^2xA4):4C2^2192,1537

Non-split extensions G=N.Q with N=C22×A4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C22×A4).C22 = D42S4φ: C22/C1C22 ⊆ Out C22×A4246(C2^2xA4).C2^2192,1473
(C22×A4).2C22 = A4×C4○D4φ: C22/C2C2 ⊆ Out C22×A4246(C2^2xA4).2C2^2192,1501
(C22×A4).3C22 = C4×A4⋊C4φ: C22/C2C2 ⊆ Out C22×A448(C2^2xA4).3C2^2192,969
(C22×A4).4C22 = C24.3D6φ: C22/C2C2 ⊆ Out C22×A448(C2^2xA4).4C2^2192,970
(C22×A4).5C22 = C24.4D6φ: C22/C2C2 ⊆ Out C22×A448(C2^2xA4).5C2^2192,971
(C22×A4).6C22 = C24.5D6φ: C22/C2C2 ⊆ Out C22×A424(C2^2xA4).6C2^2192,972
(C22×A4).7C22 = C25.S3φ: C22/C2C2 ⊆ Out C22×A424(C2^2xA4).7C2^2192,991
(C22×A4).8C22 = C2×A4⋊Q8φ: C22/C2C2 ⊆ Out C22×A448(C2^2xA4).8C2^2192,1468
(C22×A4).9C22 = C2×C4×S4φ: C22/C2C2 ⊆ Out C22×A424(C2^2xA4).9C2^2192,1469
(C22×A4).10C22 = C2×C4⋊S4φ: C22/C2C2 ⊆ Out C22×A424(C2^2xA4).10C2^2192,1470
(C22×A4).11C22 = C24.10D6φ: C22/C2C2 ⊆ Out C22×A4246(C2^2xA4).11C2^2192,1471
(C22×A4).12C22 = C22×A4⋊C4φ: C22/C2C2 ⊆ Out C22×A448(C2^2xA4).12C2^2192,1487
(C22×A4).13C22 = A4×C42φ: trivial image48(C2^2xA4).13C2^2192,993
(C22×A4).14C22 = A4×C22⋊C4φ: trivial image24(C2^2xA4).14C2^2192,994
(C22×A4).15C22 = A4×C4⋊C4φ: trivial image48(C2^2xA4).15C2^2192,995
(C22×A4).16C22 = A4×C22×C4φ: trivial image48(C2^2xA4).16C2^2192,1496
(C22×A4).17C22 = C2×Q8×A4φ: trivial image48(C2^2xA4).17C2^2192,1499

׿
×
𝔽